
Journal of Luminescence 94–95 (2001) 437–440

Anomalous dynamics of model polymer systems
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Abstract

Anomalous dynamics has been extensively investigated, especially in modelling energy and charge transfer. In many

cases the moving objects have been assumed not to possess internal degrees of freedom. In this work, we present models

in which the anomalous dynamics is due to the internal modes of the moving particles; it is expected that such features

may be easily determined experimentally through either fluorescent measurements or electronic energy transfer.

Depending on the system considered, scaling behavior may show up during certain time scales. Thus the motion of

simple polymeric chains in dilute solutions scales; the same holds true for fractal networks, whereas the dynamics for

other connected structures, such as small-world networks (SWNs) does not scale. Combining SWNs into larger, more

regular structures again leads to scaling at longer times; we display this by embedding SWNs into 2D regular

superstructures. r 2001 Elsevier Science B.V. All rights reserved.
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Regular diffusion is characterized (in the ab-

sence of external fields) by a linear increase of the

mean-square displacement with time. For anom-

alous diffusion the temporal evolution of the

mean-square displacement is non-linear, often

obeying the scaling (algebraic) law [1–4]

R2ðtÞiBtg
�

ð1Þ

with ga1: In the presence of a constant, external
field (say, oriented along the y-axis), Eq. (1) is
often equivalent to [5–7]

YðtÞh iBtg; ð2Þ

where we put R=(X ;Y ;Z). In the case go1 one

denotes the behavior as subdiffusive. For point-

like, moving objects Eqs. (1) and (2) are often due

to disorder [1–3]; for polymeric materialsFmo-

delled as beads (monomers) connected by

springsFthe motion of the beads often obeys

Eq. (1), even in the absence of disorder; this fact is

related to internal relaxation processes of the

structure [4,5,8]. Furthermore, also non-scaling

behavior, which does not obey Eq. (2), may show

up. We depict this aspect based on small-world

networks (SWN), which we introduce in the

following. We also consider embedding such

SWNs into regular, larger scale structures. First,

however, we discuss generalized Gaussian struc-

tures (GGS).

For simplicity, we describe polymeric materials

through the Rouse model [5,8,9] and its extension

to GGS [10–15]. A GGS consists of beads

immersed in a fluid and hence subject to friction
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(with friction constant z); the beads are connected
to each other by springs (with elasticity constant

K). In the Langevin framework, the position rlðtÞ
of the lth bead of the GGS, subject to the external
force FlðtÞ obeys:

z
drlðtÞ
dt

þ K
XN

m¼1

AlmrmðtÞ ¼ FlðtÞ þ zwlðtÞ; ð3Þ

where A={Alm} is the connectivity matrix of the

GGS (Alm=0 if l and m are not connected, see

Refs. [10–15] for details), zwlðtÞ is the thermal

noise (here assumed to be Gaussian, with zero

mean-value), and N is the total number of

GGS beads. The linear system of Eq. (3) is solved

by determining both the eigenvalues li and

the eigenfunctions of A. Now we let a constant

force F act (from t=0 on) on one of the GGS

beads in the y-direction. The displacement YðtÞ
of the bead, averaged over all possible points

of attack of F and over the thermal noise is

[11,12,16]

YðtÞh i ¼
F

zN
tþ

Ft0
z

1

N

XN

i¼2

12expð2liðt=t0ÞÞ
li

: ð4Þ

In Eq. (4) t0 ¼ z=K ; and we took the zero

eigenvalue to be l1: Now l1=0 is associated with

the motion of the centre of mass, /YCM(t)S=Ft/
ðzNÞ: Evidently, from Eq. (4) at very long times

/Y(t)S=/YCM(t)S, whereas at very short times,
YðtÞh iCFt=z: These features are very general and
independent of the spectrum of the eigenvalues;

the particular GGS structure under consideration

(and thus information about its structural matrix

A) shows up only at intermediate times. Both

YðtÞh i and also the stretch dYðtÞh i ¼
YðtÞh i2 YCMðtÞh i can be amenable to study using
fluorescent techniques, YðtÞh i by tracking,

dYðtÞh i by energy transfer between fluorescent

groups attached to the polymer. In this way one

has mesoscopic probes for the microscopic dy-

namics of the GGS under study.

In what YðtÞh i is concerned, we consider first

two special GGS structures. A linear, finite chain

obeys at short and medium times

YðtÞh iC
Fffiffiffiffiffiffi
zK

p t1=2; ð5Þ

i.e. Eq. (2) with g=1/2. For GGS whose under-

lying structures are regular fractals of spectral

dimension dso2 one finds in the same time-range

[6,17]:

YðtÞh iB
F

z12ds=2Kds=2
t12ds=2; ð6Þ

i.e., again scaling with g=1�ds/2 in Eq. (2).
Scaling, however, is not always obeyed; as

previously shown for star polymers and for

dendrimeric structures [7,12,18] in the intermediate

time domain one may find complex YðtÞh i and

dYðtÞh i behaviors, which reflect the topological

structure of the GGS under study. To avoid

repetition of these results, we focus here on other

GGSs, namely on structures of much recent

interest, the SWNs [16,19,20]. SWNs are obtained

by attaching long-ranged additional links (AL)

between the vertices (beads) of a regular lattice; in

this way SWNs interpolate between regular and

random lattices [19,20]. In Fig. 1 we display (inside

the magnifying glass) such a SWN; the whole

picture depicts a 2D lattice built from such SWNs.

The SWN construction which we use here follows

closely Ref. [16]: We take a finite chain and add to

each bead with probability p an AL; the other end
of the AL is connected to another bead of the

Fig. 1. Two-dimensional regular lattice built from subunits

which connect the vertices of a regular lattice. Exemplarily,

small-world networks (SWN) are shown as subunits (magnify-

ing glass); a Bravais unit cell of the lattice is indicated by dashed

lines.
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chain, picked at random. Interestingly, the density

rðlÞ of eigenvalues of such SWNs shows a

‘‘pseudogap’’ [20], i.e. the distance between the

smallest non-vanishing li (call it l2) and l1=0 is

often fairly large. Now YðtÞh i depends via Eq. (4)
directly on rðlÞ; and the ‘‘pseudogap’’ situation is
mirrored by YðtÞh i; as we proceed to show.
To evaluate YðtÞh i we start from chains with

N=1000 beads, and let p go from 0 (this being the

simple Rouse chain) to 0.8. For each p we generate
100 SWN realizations and diagonalize the ensuing

random connectivity matrices A using standard

routines [21]; then we compute as in Ref. [16]

YðtÞh i and dYðtÞh i using the obtained sets of flig:
In Fig. 2 we plot YðtÞh i for the above-mentioned
set of p: For p=0 we recover the behavior of the

Rouse chain; here YðtÞh i shows very clearly

scaling domains, the subdiffusive one going as

t1=2; see Eq. (5). For pa0 we stress that even a

small departure of p from 0 affects YðtÞh i; note
that in the intermediate time domain YðtÞh i bends
downwards from the p=0 case and that scaling

gets lost. When p is large, YðtÞh i displays an

almost flat portion, feature related to the ‘‘pseu-

dogap’’ in the spectrum of A; this behavior should

be readily detectable by fluorescent tracking.

To highlight the flexibility of the GGS-approach

we address now the problem of large polymeric

networks, which are often heterogeneous at small

distances and rather homogeneous at large ones.

As a model for such networks we construct now

GGSs based on regular lattices [22,23], whose

connecting subunits are SWNs [24], see Fig. 1. The

evaluation of the spectrum rðlÞ of the flig is now
quite straightforward because the underlying

regularity allows to simplify the problem using

Floquet’s (Bloch’s) theorem [24]. To fix the ideas

we use finite, M 
M square lattices, whose

vertices are connected by subunits of n beads each;
we let theM 
M cells be labeled by O=(a;b), and
each cell consist of s ¼ 2n+1 beads. An in-depth

analysis of the problem [24] shows that the

eigenvalues {li} separate into subgroups l(k)
according to k=(k1, k2), where kj=2pmj/M and

mjAf0;M21g; they fulfill:

lðkÞCjðkÞ ¼
Xs

i¼1

BjiðkÞCiðkÞ; ð7Þ

where the Bji(k) are related to the A matrices

discussed above through Fourier-transforms, and

the Ci(k) are the eigenvectors corresponding to the

l(k). As in solid-state physics, the problem reduces

from being sM2- to being s-dimensional. The
network construction proceeds by taking a parti-

cular SWN of n=200 beads as subunit and setting

M=20. We change the realization of the network

by changing the particular SWN subunit; in this

way the network depends on the specific SWN

realization. For each network realization we

determine the Bji(k) by transforming the corre-

sponding matrix A. The set of all eigenvalues is

then determined using Eq. (7), by diagonalizing

B(k) for M2 different k.

We are ready to calculate YðtÞh i and dYðtÞh i;
where the average includes now also the different

network realizations. Now, the extension dYðtÞh i
can be monitored, say, by attaching a fluorescent

donor near the site on which the external force acts

and an acceptor near the centre of the macro-

molecule. For short ranged interactions the change

in the donor–aceptor distance while applying

external forces would be clearly visible through

changes in the temporal behavior of the energy

decay of the donor. In Fig. 3 we depict dYðtÞh i for
p going from p=0 to 0.8. Evident from Fig. 3 are

Fig. 2. Normalized displacement /Y�ðtÞS ¼ /YðtÞSz=ðFt0Þ
plotted in double logarithmic scales versus the normalized time

t=t0; averaged over 100 SWN realizations. Here N ¼ 1000 and

p ranges from 0 to 0.8.

A. Blumen et al. / Journal of Luminescence 94–95 (2001) 437–440 439



at short times the stretching behavior of the

subunits, and at longer times the stretching of

the lattice. From the many details connected to the

picture, we want to stress that the ‘‘pseudogap’’

behavior again shows up; note with growing p the
appearance of a plateau at intermediate times.

Summarizing, we have shown that the dynamics

of polymers is particularly revealing of the

topological connections between the monomers

which form them. In several cases of wide

importance, scaling behavior with time (related

to anomalous diffusion) may show up. Other cases

of importance do not obey scaling; the particular

YðtÞh i and dYðtÞh i forms found for them are a

mesoscopic signature of the microscopic structure.

To unravel the situation, fluorescence-based tech-

niques are very suitable; they definitely belong to

the very modern instruments of the field.
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Fig. 3. Normalized stretch /dYnðtÞS � /YnðtÞS�/Yn
CMðtÞS

versus the normalized time t=t0 in double logarithmic scales,
averaged over 100 realizations. The GGSs are 2D lattices built

from SWN subunits, M ¼ 20; n ¼ 200; and p ranges from 0 to

0.8.
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