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We present a theoretical study of polymer networks, formed by connecting dendritic building blocks
(DBB's). We concentrate on the Rouse dynamics of such networks and perform our study in two
steps, considering first single generalized dendringéid’s) and then networks formed by such
DBB’s. In GD’s the functionalityf of the inner branching points may differ from the functionality

f. of the core. The GD’s cover wide classes of macromolecules, such as the “classical” dendrimers
(fo=f), the dendritic wedgesf(=f—1), and the macromolecular starfg 2, f=2). Here we
present a systematic, analytic way which allows us to treat the dynamics of individual GD’s. Then,
using a general approach based on regular lattices formed by identicalncefibeswe study the
dynamics of GD-based polymer networks. Using analytical and numerical methods we determine
the storage and loss modulg’(w) and G”(w). In this way we find that the intradendrimer
relaxation domain o6’ (w) becomes narrower wheM ., , the number of connections between the
neighboring DBB’s, increases. This effect may be understood due to the exclusion of the longest
DBB relaxation times from the spectrum of the network, given that the additional connections
hinder the mobility of the peripheral DBB branches. We expect that such effects may be readily
observed through appropriate mechanical experiments20@3 American Institute of Physics.

[DOI: 10.1063/1.1606675

I. INTRODUCTION building blocks(DBB's). Recently such networks have at-
tracted much attentioh.}?> The connections between the

Dendrimers, being perfectly symmetrical, branchedDBB’s can be permaneripne has then permanently cross-
structures have attracted much attention during the past twWinked networks as well as transier{tvhich leads to physical
decades > The dendrimers display a series of unique physi-networks. Such DBB-based polymer networks are of special
cal and chemical properties which strongly depend on theimnterest, because they exemplify materials with two levels of
generation(or, equivalently, on their size Essentially, the structural organizatiol® Here we will study the dynamical
treelike dendrimer topology leads to a very fast increaseroperties of permanently cross-linked DBB-based networks,
(which depends exponentially on the generatiofithe num-  using approaches previously developed by some &f-t.
ber of peripheral groups. Therefore, among a plethora of po- We focus on the free-draining Rouse descripfidH’
tential applications, dendrimers seem to be ideal candidateSuch an approach is definitely simplified; it does not take
for serving as building blocks in the construction of newinto account the excluded volume and the hydrodynamic
types of hybrid polymer materials with well-structured, com-interactions. Nevertheless, as we have shown in our previ-
plex architectures. As examples, one can mention here sidsus study of side chain dendritic polyméPfsit allows us
chain dendritic polymers consisting of linear chains withto capture the essential features of the viscoelastic mechani-
pendant dendritic groups’ and polymer networks bearing cal behavior, features which reflect the complex underlying
dendritic wedges in the middle of network strafids. topology.

In this paper we study theoretically one particular class  The paper is organized as follows: Section Il describes
of polymer networks, namely structures made from dendritiche theoretical approach used here, which centers on evalu-
ating the storage modulu$’(w), and the loss modulus

dAuthor to whom correspondence should be addressed. Electronic mais” (); th_ese dyn_amical quantities are reaqily monitored
blumen@physik.uni-freiburg.de through viscoelastic experiments. The following three sec-
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Clearly, we aim to have a very simple description; note that
the GGS approach allows extensions, such as having beads
of different kinds differ in their friction constants.

The Langevin equation of motion for théh bead of the
GGS reads then

dR(t Niot
(B K3 AnRu(t)=2wi(0), @

whereR|(t) is the position vector of théth GGS beadA
={Am} is the connectivity matrix of the given GG@&ere:

GD and GD-based networksandN,, is the total number of
beads(monomers in the GGS considered. In Edl) the
nondiagonal elemend,,, equals(—1) if the Ith and mth
beads are connected, and 0 otherwise; the diagonal element
Amnm €quals the number of bonds emanating from it
bead. The thermal noiséw(t) is assumed to be Gaussian,
with  (w(t))=0 and (W ,(t)Wns(t"))=2KgT Gimdagp

X 8(t—1t")/{ (herea and B denote the, y, andz directions.

Now, a typical macroscopic way to test the response of
polymeric media consists in measuring the compexeay
modulus G* (w), which sets in under the influence of an
FIG. 1. Examples for the polymer systems under study. ShowrAr@  external harmonic strain fieftf;this field acts on the polymer
isr:”t%': Sﬁ?ﬁﬂ?i@ Z”Z(g)gzazesﬁ ﬁgmgﬁf_ng steps of four such dendrimers through the solvent and produces stress. The theoretical de-

termination of G* (w) proceeds along classical lines for
Rouse-type models, see, e.g., Refs. 17 and 25. In this way,

tions are devoted to the study of the specific systems we af@r single GGS's(this corresponds to very dilute solutions
interested in. We proceed in two steps: In Sec. Il we conihe storage modulu§’(w) and the loss modulu&”(w)
sider the Rouse dynamics of singlenconnectedgeneral- [these are the real and the imaginary partsGf(w)] are
ized dendrimergGD’s). Here we extend the theoretical ap- given bYU

proach developed previously for “classical” dendrimérs 1 Mot /) )2

and for dendritic wedgé8 to wider classes of dendritic G'(w)=C—— (“’TO—‘)Z )
structures, the GD's; in GD’s the functionalities of the core Niot =2 1+ (w70/2))

and of the inner branching points are independent of eachq

other. In Sec. IV we recall a general method for determining N

the dynamics of networks consisting of identical cells . 1 W Tol2\;

(meshesof arbitrary internal structure, cells which are con- G (“’):Cm 2’2 1+ (wrgl2N) 2" S
nected into regulafsay, cubic or squajdattices. In Sec. V

we apply this approach to GD-based polymer networks, an# Egs.(2) and(3) C equalsvkgT, wherev is the number of
study in particular how the number of connections betweerP€adsimonomers belonging to polymenser unit volume in
neighboring DBB’s affects the dynamics of the resulting,the systentimacromolecules and solveninder study; the;

global network. In Sec. VI we end the paper with a shortare the eigenvalues of the connectivity matiof the given
summary and conclusions. GGS, andry=¢/K is the characteristic relaxation time. We

have chosen the unique, vanishing eigenvalue of the GGS to
be\, i.e., we sei\;=0. Now \; corresponds to the trans-
lation of the system as a whole, and it does not contribute to
As stressed, we develop our study of the dynamics othe moduli; hence the sums in Eq®) and (3) start withi
GD-based polymer networks in two steps: First, we focus on=2. Note also the factor 2 in the relaxation times
single (unconnectedGD’s; then we study networks formed = 7y/2\; of Egs.(2) and(3); this factor arises from the sec-
from such GD's, see Fig. 1 as an example. We model botlond moment of the displacements involved in computing the
the single GD and also the GD-based polymer networks btress, and we refer to Ref. 17 for a detailed derivation of this
representing their monomers through beads, attached to eafdct.
other by elastic springs with elasticity const&ntin this way It is noteworthy that even for concentrated solutions, as
we treat the dynamics of the systems under study in théong as entanglement effects are still negligikileis holds
framework of the so-called generalized Gaussiarfor polymers of low molecular weightG'(w) and G"(w)
structure® 22 (GGS'y. The GGS's represent the extension continue to follow the structure of Eq&2) and(3), the only
of the classical Rouse mod@H’for linear polymer chains to  differencé* being a change in the prefacter Given that we
systems of arbitrary topology. For simplicity, we will let all are mostly interested in the slopes@f(w) andG"(w), we
beads of the GGS be subject to the same friction congtantwill present in the following all our results in terms of the
with respect to the effective viscous medidthe solvent  reduced storage and loss moddlG’' (w)] and [G"(w)];

Il. THEORETICAL MODEL
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these are obtained by setti@=1 in Egs.(2) and(3). Note

also the fundamental fact that the eigenfunctions of the con-
nectivity matrix of the GGS do not appear in EqR) and

(3); in the Rouse GGS scheme the shear mod@digw)
depends only on the eigenvalues. Thus, in order to be able to
evaluateG' (w) andG"(w), it suffices to determine the ei-
genvalues\; (or the relaxation times;) only. This simplifies
considerably the solution of the dynamical problem for the
GD systems we are interested in.

Ill. SINGLE GENERALIZED DENDRIMERS

We begin by considering the Rouse dynamics of single
GD’s. Now the dendrimer problem has encountered much
theoretical interest, both in what analytical works on theFiG. 2. A generalized dendrimé&D) of third generationg= 3) which has
equi“brium and dynamic properties are Concerﬁ%‘&? as fe, the_ core functionality equal to 4, arfdthe functionality of the inner
well as in terms of efforts based on computerPranching points equal to 3.
simulations®®~** Most of the existing analytical studies on
the dynamics of polymers use the Rouse or the Zimm de-
scription and require at a certain stage the diagonalization of |n order to find analytically the eigenvalues of such a
the corresponding connectivity matrices by means ofgp, it is important, as in our former studi&*°to focus on
analyticaf®**** or numerical method¥~**"**Now, for  the underlying topological symmetry: in fact, taking this
very large structureflarge Ny in Eq. (1)] numerical diago-  symmetry already at a very early stage into account, simpli-
nalization methods are extremely time consuming; given thafies considerably the analytical procedure. Fundamental here
all the eigenvalues are needed, today’s reasonable (imit s to note that the eigenmodes of the GD belong to two
terms of computer time and accuradg aroundNi,=10".  general classes: Clagg involves normal modes in which
Also, depending on the structure, the direct analytical diagothe central core is mobile, clagg) consists of normal modes
nalization of the connectivity matrices is in genefiflat all with an immobile central core.
possible very cumbersome. Recently, we proposed to use for A method which allows to determine analytically the ei-
dendrimer-type structures an approach which allows us t@envalues and eigenfunctions of GD’s is presented in the
find the eigenvaluegnd the corresponding relaxation times Appendix; the procedure is similar to our work in Refs. 18
in a more analytically minded wej:**The method was first and 19. Summarizing the results of the Appendix, normal

deVelOped for “classical” dendrime}’%(the fUnCtiona”ty of modes with a mobile core, C|a$B, have eigenva'uesk of
a core is the same as that of the inner bgaasd then ap- the form

plied to dendritic wedgé& (a wedge has one main branch
less than the classical dendrimer N=Ff—2{f -1 cosyy, (6)

However, more general structures are possible, e.g., iBee Eq(A8), the i, obeying Eq.(A11):
which the functionality of the inner branching points and the

functionality of the core diffe?>3® In this paper we extend _ f—fo—1

our analytical approach to finding the eigenvalues to these SN+ 1)¥= N SINg .- @)
more general cases. Now, a generalized dendrimer, GD, is _ _

characterized by the functionality of the corg,, by the When the inequality of Eq(A12), (g+1)/g>|f—f,

functionality of the other inner branching poinfs,and by ~ —1|/\f—1, holds, Eq.(6) leads to a total ofy distinct so-

the number of generationg, Such GD’s represent a whole lutions. Otherwise, i.e., forg+1)/g=<|f—f.—1[/Jf-1,

series of structures, which include the classical dendritiers one has only §— 1) “spatially periodic” normal modes, see

(f.=f) and the dendritic wedg&s(f.=f—1) previously Egs.(6) and (7). In this case there appears one additional

considered. Furthermore, also star polymers are GD's; fospatially exponential normal mode. There are now two cases

star polymers =2 andf. is the number of arms. to consider for the spatially exponential normal mode. When

Exemplarily, we depict in Fig2 a GDwith f,.=4 and (f—f;—1) is positive, the new eigenvalue reads

f=3. Given that the generation zerg=0, consists of the —

core (the central beadof the GD, Fig. 2 shows the GD at A=1=2yf—1 coshy, (8)

generatiorg= 3. Now, a GD with giverf, f, andg consists in which ¢ fulfills

of Ny monomergbead$, where L

—1)9— in(g+ 1) y= ———— sinhg;

Ndzfc—(f fi)z 1+1 for f=3 (4) sinf(g+ Ly Ji—1 sinngy: ©
see Egs.(Al4) and (A15). In the opposite case, when
(f—f.—1) is negative, one has another kind of spatially

Ng=(f.g+1) for f=2. (5) exponential normal mode, whose eigenvalue is given by

and
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A=f+2f—1 coshy, (10 sin(g+1—n)=f—1sing—n) . (14

where ¢ is determined from

— Here 0<n<(g—1), andn denotes the last generation in
. c— 4. which all beads are immobile. As in the case of an immobile
sin(g+1)¢=~ Ji—1 sinhgi; (D core, Eq.(14) has @—n) distinct solutions if g—n+1)
>f—-1(g—n). Otherwise, when d—n+1)<.f—-1(g
—n), Eqg.(14) has only §—n—1) solutions. Then one ad-
ditional solution appears; it has the form of E8), where
now ¢ is

see Eqs(A17) and (A18). Moreover, the casé—f.—1=0
need not be considered here, since fogit-(1)/g>0 always
holds; it corresponds to dendritic wedges, whose class
modes are all spatially periodic.

We end the considerations to clagsby noting that the
eigenvaluex ;=0 also belongs to it\; corresponds to the sinl(g—n+1)¢=f—1sinhg—n)y; (15
displacement of the dendrimer as a whole, under the influ-
ence of fluctuating forces. Note that thg 1) eigenvalues see Eq(A32). Common to all these eigenvalues is their de-
found for the normal modes of clagg are nondegenerate; generacy, which equal,(f—1)(""Y(f—2), where G<n
the situation is in general distinct for the modes of class  <(g—1). Finally, for n=(g—1) one has thef(f
as we will show in the following. —1)(972)(f—2)-fold degenerate eigenvalue=1; it corre-

Before doing this, we first stop to remark that GD’s havesponds to normal modes which involve only peripheral
in general in classi) both spatially periodical and spatially peads.

exponential normal modes. This differs from the situation for To conclude this part, it is instructive to stress that the
classical dendrimet8 and for dendritic wedge¥,where for  existence of normal modes of two kinds, of spatially periodic
class (i) only spatially periodic normal modes exist. It is kind and of spatially exponential kind, can be readily visu-
namely straightforward to verify that for dendrimefg=f,  alized; spatially periodic normal modes are internal modes
and for dendritic wedged,.= (f—1), the inequality of Eq. inside the GD’s sub-branches. For nontrivial GD&s2),
(A12) is automatically fulfilled. For GD’s it is important to their eigenva|ues are bound from below bs/—(z\/m)’
notice that in clas$i) the eigenvalue connected to a spatially see Eq.(6), a value independent af. In contrast, spatially
exponential normal modevhen it existy does not decrease exponential normal modes correspond to the motion of
strongly with increasing, see the Appendix; in clag$) the  whole sub-branches against each other and may have very
minimal, nonvanishing eigenvalue is almost independent o§mall, nonvanishing eigenvalues; such eigenvalues dominate
Nyg (or, for that matter, ofj). Hence, as found earlier for the the dynamics at long times. As discussed in the Appendix,
classical dendrimerS;* the normal modes which determine the minimal, nonvanishing eigenvalue of the GOy, cor-
the long time behavior belong to clagb. responds to a claséi) normal mode; for largey one has

The normal modes of clag§) have an immobile core. approximately
We remark that for this class the eigenvalues and the struc-
ture of the eigenfunctions are the same as for the classical
dendrimer¥’ and for the dendritic wedgég.For f and g
fixed, changes inf; (f;=2) lead only to changes in the
degeneracy of the eigenvalues. In the special case when only

the core is immobile, the eigenvalukg are again given by see Eq(A37). In this respect the situation is identical to that

(f-2)?

A min= (f— 1)(g_+ 1)+ (16

Eq. (6) but the ¢ fulfill now found for dendritic wedgeé& and classical dendrimet,
N0+ D= JF—1si ) 12 given that for all GD’s with fixed andg the clasgii) normal
Sing+1) i singyic: (12 Hodes are the same, see Appendix.
see Eq(A25). Again we have a situation in which the num- These findings allow us to study the dynamic properties

ber of distinct solutions/,, depends on a relation between of GD’s in the GGS-framework of Sec. |l, given tHatased
the parameters of the system under study. ThugE).pro-  on Egs.(6)—(15)] we can readily computall the GD eigen-
vides a total ofj distinct solutions if g+ 1)>f—1g. Note  values(relaxation timesfor arbitrary ., f, andg. That we
that this condition is fulfilled only in three cases, namely forindeed obtain in this wagll the eigenvalues is also shown in
(f=3;9=1), for (f=3;9=2), and for f=4;g=1). Inall  the Appendix.
other cases, i.e., fogH1)<f—1g, Egs.(6) and(12) give As an illustration, we plot in Fig. 3 the storage,
only (g—1) solutions. Then, an additional solution appears|G’(w)], and the losg,G"(w)], moduli of GD’s withf =3,
leading to an eigenvalue of the form of H8), with ¢ being  g=4, and varyingf.; in Fig. 3 f; ranges from 1 to 10.
given by Eq.(A27): Remarkable for all curves is that they do not show scaling
. I (i.e., a linear dependence in the double logarithmic plot of

Sinh(g+1)¢=Vf—1sinhgy. (13 Fig. 3) in the intermediate frequency domain. In this region
In contrast to the clas8) normal modes, this eigenvalue is G'(w) and G”(w) reveal the underlying topological struc-
(f.—1) times degenerate. ture. Going fromf.=1 to f.= 10 influences mainly the low-

In general, the GD motion may be such as to leave largérequency form of the curves, given that the contribution of
groups of noncore beads immobile; then the eigenvalyes the maximal relaxation time of the Glbecause of the de-
are still given by Eq(6), with ¢, obeying Eq.(A30): generacy increases witlf .
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FIG. 3. Reduced storage modull@’ ()] and loss modulusG”(w)] plot-

ted in double logarithmic scales vs the reduced frequenty. Shown are
results for GD’s withf =3 andg=4. The functionality of the cord,. , takes
the values 1, 2, 3, and 10.

IV. NETWORKS BUILT FROM SUBSTRUCTURES
(CELLS): THE MODEL

Now we turn to a formalism which allows us to study

Dynamics of dendrimer-based polymer networks 7583
where one letd— (j,2) and m—(i,Q’). Due to obvious
symmetries, one now sets in EGL7) B{"=A o and
B{P9(A)=B{YQ—Q')=A|giq . This leads t

Niot

S
> AmRn(h)=2> BiMRig(1)
m=1 =1

S
+2 2 B (MRig-ah), (19
whereA=Q—Q' is the relative distance between the lattice
cellsQ andQ’, measured in units of number of cells. In Eq.
(18) the matrixB(™={B{™} is the connectivity matrix in-
side a given cell consisting afbeads. On the other hand, the
matrices B®V(A) ={B{*)(A)} describe the intercell con-
nections: In them the nonzero elemeB{§™(A) equal —1;
they indicate that bead of cell & and beadi of cell
Q'=Q—-A are connected by a bond. If one connects the
cells in the spirit of Fig. 1, each elementary cell is directly
connected to its nearest-neighbor cells only; for a topologi-
cally cubic lattice theA are then restricted to the sgi, O,
0),(-1,0,0,(0,1,0,(0,-1,0,(0,0,2, (0,0,—1)} only.

As discussed in Refs. 14 and 15, the procedure is close

the dynamics of networks built from topologically complex in spirit to that encountered in the study of crystfs’* the
substructures. In the next section we will apply this methodnathematical structure of the theory is identical, but the

to regular lattices built from GD’s. We start by remarking

physical situation is not. In particular, the polymer network is

that the study of cross-linked polymer chains which thenin no way assumed to be translationally invari4ht® For-

form regular lattices has a long histd#7;*® treating cross-

mally now, the ansatz

linked dendritic structures is, however, of quite recent

interest®!® Before considering particular networks based ONR. =R
.o . . Jﬂ(t)_
GD'’s, in this section we recall a general approach developed

by some of u¥"*°to treat the dynamics of lattices formed by
identical cells (substructures In former works**® these

jaﬁ'y(t):k ka Cjkexpli[kia+koB+Kszy])

1,172,183

X exd — N\ (K)t/ 7], (19

cells consisted themselves of subunits; here we let the celsolves the problem. Heredenotes the imaginary unit;
have an arbitrary architecture, and require only that they are- {/K is the characteristic relaxation time, tke, are con-

topologically identical to each other.
We start our presentation based on(tapologically

three-dimensional cubic lattice; the reduction to lower di-

stants, and th&=(k,k,,ks) obeyk;=2mm;/N, where the
m; are integers with &m;<(N—1) for i=1, 2, and 3.
Again, one should stress that in E49) the indexk simply

mensions and the extension to higher topological dimensionsounts the eigenvaluémodes, and is not related to a recip-
are quite straightforward. The elementary cubic cell of therocal wave vector. Setting

lattice is denoted by a three-component ind@x(«,B,7)
wherea, B, andy range from 1 td\. We assume that such a
cell containss beads, which we number by the index
je{l,--,s}. The whole network consists then ®&* beads,
numbered by {,Q)=(j,a,B,v). As before, all the beads are

connected to their neighbors by means of elastic springs

which have the same elasticity const#nt

In this case the determination of the eigenvalues of the

connectivity matrixA simplifies considerably, since the elas-
tic term in Eq.(1) readst**®

Niot S

> AImRm(t)ZE > Ajaia'Ria(t)
m=1 =1 Q'

S

2241 AjqioRia(t)

+21 > AjaiaRia(t) (17)
1= Q'

Q' +Q

B“(k):B};m)Jr}A‘, BIP(A)exp —ik-A) (20)

the Langevin equation of motion, E¢fL), reads now"*®

S
MK)Cje= 2, Bji(K)Cik. (2D
The matrice8(k)={B; (k)} carry all the information about
the connectivity(inter- and intrace)l Since there aré® k
values, there ardl® different B(k) matrices. The symmetry
helped to simplify the problem: instead of having to diago-
nalize A, which is a 6N®xsN°®) matrix, one has now to
diagonalizeN® different (sX's) matrices:®

V. DENDRIMER-BASED LATTICES

Now we apply the general approach of the previous sec-
tion to our system of interest, and treat topologically regular
lattices built from GD’s, see for instance FigB). We hence
assume that the dendritic building bloc8BB'’s) are con-
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nected with each other in a regular way: We denotévhy 0
the number of connections stemming from each DBB, di-
vided by the number of its neighboring DBB’s. As an ex- ak

ample, in Fig. 1B), given the two-dimensional pattern of the
lattice, one hadM ., =4/4=1. =
The caseM =1 corresponds to a slightly connected :§
GD-based network. Values dfl., larger than unity are %
]

readily attained. For this we center on the peripheral beads,

M =1
since they are most prone to serve as connections, given that M =3
their functionality inside the GD is less thdnA GD with -4 M_=5]| -
givenf,, f, andg hasN,, peripheral beads, where M, =9

per c(f_ 1) 9-1), (22) -5-4 -3 BE -Il . ll) . i I

In a simple hypercubic geometry each lattice site hdg; 2
nearest neighbors, wheid,; is the dimensionality of the FIG. 4. Reduced storage moduli§’(w)] plotted in double logarithmic
lattice. Settingn for the largest integer not exceeding scales vs the reduced frequeney,. Shown are results for a squaf20

N._/2 n n then in mmetric w to X20) lattice based on a GD witli,=4, f=4, andg=3. The number of
(Npe/20;), ONE can then use, in a symmetric way, umto connections between the DBB's ranges friig, =1 to M.,=9; the latter

beads to connect a DBB to one of its neighbors. value leads to a network without dangling bonds. The line with open circles
In order to apply our general approach we havegives the behavior of the single, underlying GD.

to specify the matricesB(™=(B{™) and B®9(A)
=(B{™(A)), see Eq(20), to the problem at hand. Focus-
sing on Fig. 1B), a link is established between two GD’s by [G'(w)] for GD’s with f,=4, f=4, andg= 3, which are
the elimination of one bead, say, through a disproportionconnected into §20x20) square lattice. We leM,, the
ation reaction. Evidently, other cross-linking procedures areaumber of connections between neighboring DBB's, vary
possible, e.g., through the creation of new bonds. Since wsuch thatM., equals 1, 3, 5, and 9. Furthermore, we take
treated such situations in previous work, we prefer to con€are that the connections obey the symmetry requirement;
sider here the case of Fig(R). We also stay in the frame- they are then regularly distributed with respect to the under-
work of a homopolymer modehll beads in the whole net- lying GD. Note that in our case heM ., =9 corresponds to
work system have the same friction constanddthough the the situation in whichall peripheral beads of the underlying
copolymer case may be also considefeHience, due to the GD participate in connections, so that there are no dangling
newly createdVl ., connections between each pair of neigh-bonds at all. Distinct from it is the casé., =1, in which the
boring cells, each such cell has. d, beads less than the network is only slightly connected. Also presented in Fig. 4
precursor GD withiNy beads, Eq(4). Such a DBB cell con- is[G’(w)] for the underlying GD. Starting with the isolated
tains thuss=N4— M, d,,; beads, and the matrB™ can be  GD, one has a plateau at very high frequencies and a termi-
obtained from that of the original GD by the removal of nal, w?-type behavior at very low frequencies. The frequency
these M., d,;; beads. Moreover, given that there ard,2 region in between is typical for dendrimers: in the doubly
nearest neighbors to each DBB cell, there adg;2onvan- logarithmic scales of Fig. 4 the curve has a logarithmic-type
ishing B®9(A); each of these matrices contaiNk, non-  behavior’’*® Going now to the lattice case, we start with
zero elements equal to-1); see the previous sections for M, = 1. The curve at rather high frequencies reveals then the
details. isolated GD behavior of G'(w)]. This is followed by a
Now we are ready to perform numerical calculations onregion with a power-law decay’(w)]~ w, typical for 2D
networks consisting of DBB's; for this we follow our general lattices?®°253Finally, as it is typical for GGS's of finite size,
scheme discussed in Sec. IV. An interesting question olne again reaches at very low frequencies the terminal,
which we will focus is in how faM,, the number of con- w2-decay pattern dfG’(w)]. In Fig. 4 this terminal domain
nections between pairs of neighboring DBB'’s, affects theis located at loghm)<—3.
dynamics of the network. IncreasingM¢, leads to a systematic narrowing of the
We start at first with DBB’s connected into a two- high-frequency region, in which the GD behavior is evident;
dimensional2D) square lattice. Here it is worthwhile to re- the curves for largeM ., depart earlier from the curve of the
call that such a network is two dimensional only in a topo-single GD. As we will see in the following, this effect has a
logical sense; dynamically, the network moves in the 3Dgeneric character, i.e., it does not depend significantly on the
Cartesian space like a fishing net in water. An obvious quesbDBB parameterd, f, andg, nor on the particular type of
tion is then in how far our results are influenced by theregular lattice into which the DBB’s are connected. This can
choice of the lattice; we will make some comparisons withbe explained as follows: The long relaxation times of the
3D lattices at the end of this section. single GD are controlled by large amplitude motions. The
We start with a fully symmetrical situation so that the connections hinder these motions, and force instead the indi-
symmetry of the DBB matches that of a 2D lattice. Such avidual DBB to follow the dynamics dictated by the lattice.
situation is, for instance, obtained whén the functionality In Fig. 5 we plot the reduced storage modul@& () |
of the core of the underlying GD, is taken to bd,2, here  again for a 2D(20X20) lattice, but built from a larger GD,
thus f.=4. In Fig. 4 we plot the reduced storage moduluswith f.=4, f=4, andg=4. The displayed data show the
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FIG. 5. The same as in Fig. 4 but for DBB's based on a GD Wigh4,  FIG. 7. Reduced storage modulli&’(w)] plotted in double logarithmic
f=4, andg=4. Shown are the results for the two extreme cadksg=1 scales vs the reduced frequeney,. Shown are the results for a cubic
andM,,=27. Also shown i§ G’ (w)] for the isolated GOdashed linand  (20x20x20) lattice based on a GD witf,=3, f =3, andg=>5. The number
for the same GD, when its peripheral beads are hold figeshed line with  of connections between neighboring DBB'’s ranges fritg,=1 to M,
stars. =8. The line with open circles givgss’ (w)] for the isolated GD.

extreme cases, nameM =1 and M. =27; in the latter

there are no dangling bonds anyménete that the terminal, yo|ve the motion of just a few beads. The dependence of the
w’-type decay of G'(w)] does not yet show up in Fig)5 dynamics onM,, appears predominantly on length scales
Moreover, in Fig. 5 we also display the relaxation behaviorcomparable to the size of the GD. We conclude that the loss
of the isolated GD, and also a situation in which all periph'modulus[G”(w)] is less adequate thdi®’ (w)] to display
eral beads of the GD are hold immobile. From Fig. 5 theconnectivity-related effects. From Fig. 6 we note as special
narrowing with increasing ., of the domain of GD relax- ase the totally connected situatioll,.,=27. The corre-
ation is evident; the narrowing gets even more pronouncedponding curve has its maximum shifted to higher frequen-
when the DBB size increases. Furthermore, we note the aRjes, when compared to the situation for smaMer, .
pearance with largé, of a domain intermediate between Al the above conclusions have been drawn on the basis
GD-like and lattice dominated. Also clear from Fig. 5 is that of 2p |attices built from DBB’s, whose symmetry is consis-
for high M, the high-frequency domain cannot be repre-tent with the symmetry of the latticén particular, we chose
sented in terms of a single DBB with all its peripheral beadsfcz4)_ To gain an idea on how this point affects our results,
fixed. This is due to the extremely narrow relaxation speCye calculated the dynamic moduli for the same 2D lattice
trum of a DBB with fixed ends, its I%ngest relaxation time it from DBB’s which are not symmetrical with respect to
being almost independent of its S&ee'z_ the lattice, namely forf =3 (the data are not shownWe

As for the loss modulupG”(w)], it turns out to be less  foynd that all our main conclusions are unaffected by the
sensitive toM, than[G'(w)]; see Fig. 6. Here, as usual, chojce off, .
[G"(w)] displays a maximum, whose position is mostly de-  Now we turn to a 3D cubic lattice, obtained by connect-
termined by the high-frequency modes, which in general inyng pBB's. Such a structure continues to be rather simple;
possibly, however, it may represent real networks clobkr.
Fig. 7 we present our numerical results for the storage modu-
lus[G'(w)] of a 3D (20x20x20) lattice, built from trifunc-
tional dendrimers of generation 5.3, f=3, andg=5).
With increasingM, we observe the same trend as before:

-1

= going fromM.,=1 to M_,=8 leads to a stronger departure

:§ ,L of the[ G’ (w)] from the curve corresponding to the isolated

B GD; the boundary of the region in which these curves differ

? shifts to higher frequencies.

- — M, =1 We conclude by noting that the main significant differ-
Ny *—k M, =9 ence between 2D and 3D GD-based model networks is to be

o x;; found in the relaxation domain determined by the lattice. To
R demonstrate this, we plot in Fig. 8 fdM.,=1 the storage
4 3 2 a4 0 1 2 3 4 modulus[ G’ (w)] for DBB’s connected into a 2D and into a

log(wr,) 3D network. Here the DBB's are based on trifunctional den-

_ o drimers f.=3, f=3, andg=>5). The difference inG'(w)]
FIG. 6. Reduced loss modul{i&”(w)] plotted in double logarithmic scales can now be seen in the domain of frequencies where the
vs the reduced frequenayr,. Shown are the results for a squap®x20) . . q .
lattice based on a GD with.=4, f=4, andg=4. HereM,, ranges from  €laxation starts to differ from that of the single GD, on the

M =1 to M, =27, see text for details. low-frequency side. Here one expects a behavior close to
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DBB’s. Using analytical and numerical methods we evalu-
ated the dynamical shear modulus of the system under study,
while highlighting the role played b, . The fact that an
increase irM ¢, is linked to a hindrance of the mobility of the
peripheral DBB groups leads to the exclusion of the long
relaxation times of the DBB’s from the relaxation of the
whole lattice. With increasingM., the storage modulus
[G’(w)] of the network deviates more and more from the
behavior off G’ (w) ] for the isolated GD. This effect is very
general; in particular, it is almost independent of fhe f,
andg parameters and of the typ2aD or 3D) of the underly-

= 2D Network
/ #—% 3D Network

5 / — — Single Dendrimer| ] ¢ A - ]
ing lattice. We expect that the effects discussed here will be
M [ M [} N 1 L 1 M 1 M
4 3 2 -1 0 1 2 readily observable through appropriate mechanical experi-
log(wrt,) imer-
0 ments on dendrimer-based polymer networks.

FIG. 8. Reduced storage modulp@’(w)] plotted in double logarithmic

scales vs the reduced frequeney,. Shown are results for a squaf20 ACKNOWLEDGMENTS
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necting DBB'’s into a networkby which the mobility of their SUPERNET.
peripheral monomers is hindeneléads to the narrowing of

the internal relaxation domain of the DBB is a fact of generalappENDIX: EIGENVALUES AND EIGENFUNCTIONS
validity, which may be used as a signature for cross linkingOF A GENERALIZED DENDRIMER

[G'(w)]~ »*? for three-dimension&l*® and [G'(w)]~ ®

for two-dimensiondf*2>3networks, a fact which is fulfilled
in Fig. 8. At even lower frequencies the behavior crosse
over to the universal,G’ (»)]~ »? scaling law. Now, both

Here we present the determination of the eigenvalues

V1. CONCLUSIONS and eigenfunctions of GD’s which are characterizedfpy

In this paper we presented a theoretical study of the dythe functionality of the core, by, the functionality of the
namics of dendrimer-based polymer networks. In such strucother inner beads, and ly the number of generations. Our
tures, the networks are created by connecting DBB'’s. Ouprocedure follows closely that of the Appendix of Ref. 18, so
goal was to determine the influence Mf.,, the number of that we focus on the differences encountered in going from
connections between the neighboring DBB’s, on the methe dendritic wedge treated in Ref. 18 to our general case
chanical characteristicésuch as the storage and the losshere; note that for the weddgg=(f—1) holds.
moduli) of the network. We mode_led the systems by GGS, & wobile core
method which extends Rouse’s ideas to hyperbranched and
to multiply-connected objects. We performed our study in ~ When the core is mobile in general all GD beads may be
two steps, considering first isolated GD's and then regulafvolved in the motiont®**%*Since each inner GD bead is
networks formed by such GD’s. connected to one bead from the previous ahd 1) beads

First, we determined analytically the eigenvaliesax- from the next generation, the Langevin equations of motion
ation times and the eigenfunctions for the generalizedfor the inner GD beads reddee Eq.(1)]
dendrimers(GD’s); GD’s are given byf., the functional- dR; (1) f-1
ity of the core,f, the functionality of the inner branching g%-i‘K fR; m(1) —Rj_1n(1)— >, Rj1,(t)[=0.
points, andg, the generation. Such GD’s describe a wide =1
class of structures, among which are the classical dendrimers (A1)
(fc=1), the dendritic wedgesf(=f—1), and the macro- HereR; y(t) is the position vector of thenth bead of gen-
molecular stars f(;>2,f=2). Our general results here are erationj, where the indey for the inner beads lies in the
fully consistent with previously undertaken studté&4®31 range 0<j<g (j =0 corresponds to the carandR;_ (t)

Then, we recalled a general method for determining inand R;.4,(t) (I=1,..,f—1) correspond to the locations
the GGS framework the dynamics of regular lattices formedf the nearest neighbors ®; (t). As in Ref. 18 we set
by identical cells(domaing of arbitrary internal topology. the right-hand side of EqAl) to zero, since the averages
We applied this method to regulé2D as well as 3D lat-  we are interested in imply only linear relations of the normal
tices, obtained by connecting DBB’s. Our main variable heremodes. The system of EqAl) can be solved by the
was the number of connectionlsl.,, between neighboring transformatiof?
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R;,m<t>=2k CITi(j,m)exd — Nt/ 7o), (A2)

where 7= ¢/K is the characteristic relaxation time of the
GD, Cy arej-independent constants, are the eigenvalues,

and IT,(j,m) are the eigenfunctions corresponding to Eq.

(Al). The relaxation timesy are uniquely determined by the
eigenvalues\, through r,.= 79/\. Inserting Eq.(A2) into
Eqg. (Al) leads to

(=N I(j,m)
f-1
| FIGm) =T = 1) = 2 T(j+10)|=0. (A3)
As before!®!® also for GD’s the normal modes can be
characterized by motions involving one “root” bead and all
of its descendants of higher generations. For any subwedg

same generation move in the same mafdh&For motions
in which the core is the root one thus has(j,m)

Ey

having as ancestor the same root, beads which belong to th

Dynamics of dendrimer-based polymer networks 7587

Py(j)=(F=D)sin(j+ 1)+ (fe— ) V-1 sinjyy
+(f—fe—1)sin(j — 1), (A10)

solves both Eq(A7) and also Eq(A6) when they, obey

—f.—

Sin(g+1)¢pk=ﬁsingz//k. (All)

We stop to emphasize that by settihg=f or f,.=(f—1) in
Egs. (A10) and (A1l), we recover the previously obtained
results for classical dendriméfsand for dendritic wedge'$,
respectively.

Now we turn to the question of the number of distinct
eigenvalues obtainable from EGA11l). As previously dis-
cussed by some of us for dendritic wedd®sn class(ii),
= s.(A8) and (Al11) lead to either §—1) or to g distinct
eigenvalues. This depends on whethg#-()/g is larger or
smaller thanf—f.—1|/{f—1. For

=1II,(j); see also Refs. 19 and 18 and Fig. 3 of Ref. 31. It

this way Eq.(A3) gets simplified to
(= NI () +[FIL()) = H(j = 1) = (F = DI (j + 1) ]=0.
(Ad)

One solution of Eq(A4) is I1,(j) = const; the corresponding
eigenvalue is\;=0. The other solutions are best obtained

using the substitutiofl,(j)=(f—1) 12d(j), which leads
t018,19

(F=M) () = V=1 P (j+ D)+ Dy (j—1)]=0.  (A5)

Equation(A5) holds for all inner beads,9j<g. The pe-
ripheral beadsj=g, obey

(1-N)Py(g) — V=1 (g—1)=0 (A6)
while for the casg =0 one has
fe
(fc—hk)q)k(o)—ﬁ@k(l):O- (A7)

Note that only in Eq(A7) the parametef; enters explicitly.

Hence this equation is the one that differentiates arbitrary A —f—2,/f—1 coshy.

GD’s, classical dendrimet$ (for which f.=f), and den-
dritic wedge$® (for which f,=f—1).

Now, a general group of eigenfunctiods,(j) to the
system of Eqs(A5)—(A7) can be expressed as linear com-
binations of the functions®{(j)=cosjy, and ®y(j)
=sinji, where they, will be determined in the following.

It is namely a simple matter to verify thdt(j) and®y(j)
satisfy Eq.(A5) for the eigenvalu¥1®

Ne=f—2Jf—1cosyy. (A8)

Equations(A6) and (A7) fix now the form of ®,(j). It is
easy to check that the linear combination

Dy(j)=[VE-1(fc—f)+[2(f—1)—fcJcosp ] P(j)
+[fesing]O()), (A9)

which can be rewritten as

|f_fc_1|

V-1

Egs. (A8) and (All) lead to a total ofg distinct solu-
tions; otherwise the number of distinct solutions ¢s<1).
We note that Eq(A12) is automatically fulfilled for the clas-
sical dendrimerS (f.=f) and for the dendritic wedg&s
(fo=f—1). In other words, all their clas8) nonvanishing
eigenvalues and corresponding eigenfunctions are of spa-
tially periodic type.

When Eq.(A12) does not hold there appear, as for class
(i) normal modes? additional eigenfunctions. We note first
that the combination

(g+1)
>
g

(A12)

®(j)=(f—1)sinh(j+ 1)+ (fo—f)Jf—1sinhjy
+(f—fe—1)sinnj—1) ¢ (A13)

fulfills Eq. (A5) for the eigenvalue
(Al4)

Inserting Eq.(A13) into Egs.(A6) and (A7) leads to the
following equation fory:

sinh g+ 1)¢=f c_

ﬁsmhgzﬁ

One can easily demonstrafeee Ref. 18 that apart from
the trivial solutiony=0, Eq. (A15) has a single additional
solution ¢ if and only if (g+1)/g<|f—f.—1|/{f—1 and
(f—f.—1)>0.

Interestingly, when f—f.—1)<0 and @+1)/g
<|f-f.—1|/Vf—1, Eqg.(A15) has no nontrivial solutions.
It turns out that in this case the spatially exponential eigen-
mode still exists; now its eigenfunction “alternates” from
generation to generation, namely it is given by

(A15)
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®(j)=(—D)I[(f—1)sinh(j+1)p— (f.— )/f—1 sinhjy A®=0, see Eq(A22). However, this casef.=(f—2), is
o again not consistent with the appearance of a spatially expo-
+(f=fc—1)sinh(j—1)y]. (A16)  nential normal mode, see EGA12), and therefore has to be

One should note the factor1)) when comparing Eq. excluded from consideration. Repeating all the above argu-
(A16) with Eq. (A13). It is now straightforward to verify that Ments for the exponential eigenmode of “alternating” type,

; 0
this eigenfunction corresponds to the eigenvalue see Egs(Al17) and (A18), one can again show that(®),
given by Eq.(A22), is a lower boundary forA. Thus for

A=f+2\f—1 coshy, (A17)  class(i) normal modes the eigenvaludeis practically inde-

pendent of the size of the dendrimge., of the number of

where) is determined by generationg). As we will see in the following, this is not the

f—f.—1 case for clasgii) normal modes.
sinh(g+1) y= — ——=——=—sinhg. A18
hg+1)y 1 gy (A18)
Because of the change of sign in this condition, in a similar2- Immobile core
way as above, it follows that EJA18) has a single, non- The next group of motions which we consider imply an
trivial solution if and only if f—f.—1)<0 and @+1)/9  jmmobile core!®*3j.e., they are clas§i) normal modes.
<[f—f.—1[/Vf-1. Here, because of the inherent symmetry, one has for GD’s

We stop to note the differences between E(58),  wjth givenf and g the same set of eigenvaluélaxation
(A10), and(A11) on one hand and EqeA13)—(A18) onthe  (imeg as for the classical dendriméfsand the dendritic
other. They lead to a total @f nondegenerate clagg eigen-  \yedged® with the samd andg. The only difference consists
modes, which can be categorized into two groups: The firsf, the degeneracy of these eigenvalues. To see this, consider
group is given by spatially periodic normal modes, the secfjrst the case when the normal mode involves a mobile next-
ond group contains at most one spatially exponential normalejghbor bead to the core. Then the degeneracy of the
mode. Including the eigenvalueg =0 we hence have a total corresponding eigenvalues will be heré.{1)-fold, as

of compared to {—1)-fold for the classical dendrim€rand
NY=qg+1 to (f —2)-fold for the dendritic wedgé® This can be seen as
x =9 (A19) : >
follows: One can choose as eigenmodes those in which most
distinct, clasgi) eigenvaluesi.e., relaxation times of the neighboring beads of the core and their descendents

Before turning to the clasgii) normal modes, it is are immobile, so only two neighboring beadsnd their
very instructive at this point to estimate the value of thesubwedgesmove against each other, while the core stays
minimal nonvanishing eigenvalue in clags From Eq.(A8)  immobile®°31These beads act as “roots.” Now focusing
it follows that for spatially periodical normal modes the ei- on such one root, one can pick for it exactliz{ 1) differ-
genvalues are bound from below liy-2yf—1, which is  ent partner roots, by which one obtains a set of correspond-
always positive. Furthermore, these eigenvalues do not déag, (f.—1), linearly independent normal modes. It is then
pend ong. The A eigenvalue of Eq(A14) for class(i) nor-  easy to verify that the other normal modes of this class fol-
mal modes can be estimated as follodJsing the new low by a linear operatioria subtraction from the members
variablez=exp one can rewrite Eq(A15) in the form of the sett®1931
fof 1 172 Thus, for clasgii) normal modes, the problem involves
- c f . (A20) separated, mobile subwedges. The problem has been dis-

Ji—-1 1-z 9-2 cussed in details in Ref. 18, so that we can report the results,
restricting ourselves to point out the changes due to the GD.
First, when GD beads of the first generation are mobile,

In terms ofz the eigenvalue\, Eq. (Al4), reads

A=f—F—1(z+z Y. (A21)  Whereas the core is immobile, EGr7) gets replaced B§*°
For largeg one can obtairz iteratively from Eq.(A20). (F=N)Py(1) = VF=1Dy(2)=0 (A23)

Evidently, a starting point d—) is zZ®=(f—f.—1)/  gnd the functions
Jf—1 [note that here f(—f.—1) is positive and that

(f—f.—1)/Jf—1>(g+1)/g>1] from which, with Eq. Dy(j)=sinjy, with j=1,.g (A24)
(A21), it follows that in which the y, fulfill
A(O):(fc+1)_]c_—l (A22) sin(g+ 1) ¢= Vf—1 singey, (A25)
f—f.—1°

solve Egs.(A6) and (A23) for the eigenvalues.,, again
We stress that, similar to spatially periodic normal modesgiven by Eq.(A8).

the eigenvalue for the spatially exponential mode is bound The number of distinct solutions of EqQ#8) and(A25)
from below byA(®, which does not depend ap Note that  follows now along the discussion lines after E411): The
the casef.=(f—1) [when one has a singularity in Eq. resultis that for ¢+ 1)>/f—1g Egs.(A8) and(A25) have
(A22)]is not included, because fog= (f —1) no eigenvalue g distinct solutions; otherwise the number of distinct solu-
of A type exists, see EGA12). Also, care has to be taken for tions is (@—1). We noté® that the condition g-+1)
the special casd.=(f—2), for which one might infer >f—1g is fulfiled only in a few cases, namely, fdr=3
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with g=1 andg=2 and forf=4 with g=1. For all other

values of the system’s parameters we find, based on E
(A8), (g—1) distinct eigenvalues, whose eigenmodes ar

spatially periodic functions of. In general henceg+ 1)

. . )
<\/f—1g holds, so that one obtains additional eigenmodes. . I?aralle:lng Relf. 18, we pbta|rf1 novr\]/ thel total numbf I
These are of the forHi® of eigenvalues(relaxation times for the class(ii) norma

modes: Summarizing, in clas$ii) one has for each
®(j)=sinhjy (A26)

ne{l,..g—1} exactly (@—n) distinct eigenvalues, which
and fulfill Eq. (A5) for A given by Eq.(Al4). They also

are eachf .(f —2)(f—1)""*-fold degenerate. Including also
fulfill Eq. (A23), whereas Eq(A6) requires in addition that e casen=0, with g distinct eigenvalues, eactf(-1)
sinh(g+1) = /f —1 sinhg (A27)

times degenerate, leads to
g-1
holds. This relation, as discussed above, has a single addi-

tional solutiony if and only if (g+1)<+/f—1g. In this way

(=M Pw(9) + Pi(g)=0. (A33)

quation (A33) has the unique solutioin=1, which is
f.(f—1)92(f—2)-fold degenerate.

Ng\Z):(fC_l)g_l—nZl (g—mf(f=2)(f-1)"*

we have in all caseg different eigenvalues. Taking now into (f-1)%-1
account the f{,—1)-fold degeneracy discussed before, we :fc—f_z - (A34)
obtain a total of {;—1)g class(ii) normal modes in which
next neighbors to the core move. for =3 and to
In general, as discussed before, in cldg$ normal N?=(f.—1)g (A35)

modes even larger groups of noncore beads may stay im- i

mobile. We denote by, with n<(g—1), the last generation for f=_2. We obtain the t(_)tal number of normal mod?s, by
in which all beads are immobile. This last generationSumming those from clag$), Eq.(A19), and from clasgii),
containsf.(f—1)"" immobile beads and we focus on a Eds.(A34) and(A35):
particular one, to Wh.iCh f(—l) mobile beads are'atta'ched. N, = N(Al)"‘ N§\2): Ny, (A36)
As before, the combination off 1) subwedges implies a

(f—2)-fold degeneracy, so that the total degeneracy i$€e Eds(4) and (5). Equation(A36) shows that we have

now f(f—1)""1(f—2)-fold, with ne{1,...g—2}.

Now for @, (j)=0 (with 0<j=<n) and &, (n+1)#0,
Eqg. (A5) holds forn<j<g, Eq. (A6) stays unchanged, and
Eq. (A23) is replaced b¥f

(f=A)@y(n+1)—T—1d,(n+2)=0. (A28)

This leads to the following set of eigenfunctiofsee Egs.
(A24) and (A25)]:

D)) =sin(j —n) gy, (A29)

where the eigenvalues are given by E&8) and they, have
to be obtained frorf

sin(g+1—n) ¢ =Jf—1sing—n)y. (A30)

Similar to the cases discussed before, E430) has in
the interval G<y<m exactly (@—n) distinct solutions
if (g—n+1)>f—1(g—n). Otherwise, i.e., wheng—n
+1)<{f—1(g—n), there are §—n—1) distinct solutions

of the type of Eq.(A29), complemented by one obeying a

form akin to Eq.(A26), namely,
&(j)=sinh(j—n)y, (A31)

whose eigenvalué. keeps the form of EqA14), the con-
dition on ¢ being now®

sinh(g—n+1)y=f—1sinHg—n). (A32)

The last equation has a unique nontrivial solution if an
only if (g—n+1)<f—1(g—n). Thus, taking into account
the degeneracies of eigenmodes, we find here a total
(g—n)f(f—2)(f—1)""* eigenvalues.

Finally, in the special situatiomp=(g—1), in which
only the peripheral beads move, given thbt(g—1)=0,
one ha& from Eq. (A6)

indeed foundall the eigenvaluegrelaxation timey of the
GD’s, with their correct degeneracy.

Finally, the estimation of the minimal eigenvalue in the
class(ii) of normal modes proceeds exactly as in Ref. 18.
There it was proven that the minimal, nonvanishing eigen-
value corresponds to a spatially exponential normal mode,
whose eigenvalud (V) obeyd®

(f—2)2
(f— 1)(g+ 1-
We note thatA (Y decreases exponentially withand that it

corresponds to a mode in which the largéstin dendritic
branches move as a whole with respect to each é¢Heér.

AV = (A37)
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